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Abstract. A recently proposed extension of the WKB method to integrable but non-separable
Hamiltonian systems, based on the construction of global solutions of Dirichlet problems for
the Hamilton–Jacobi equation, is applied to the construction of semiclassical wavefunctions for
the Barbanis Hamiltonian. The wavefunctions obtained are compared with those generated for
the same system, by means of the coherent Gaussian method, by Davis and Heller. It is shown
that when the caustics are smooth curves, there is no energy degeneration, and the semiclassical
wavefunctions obtained by the extended WKB method agree with those by Davis and Heller.
But if internal caustics are present and to the same semiclassical energy level correspond, not
simply to one as in the coherent Gaussian method, but several (four in the example investigated)
WKB wavefunctions, they differ in the regions inside the internal caustics.

1. Introduction

The semiclassical quantization of generic, non-separable, Hamiltonians, is an old problem,
whose interest has been renewed by the study of the so-called quantum chaos [1]. In this
framework, a new method has been recently proposed [2], which extends the WKB scheme
and is suitable for the tori quantization of integrable or near integrable but non-separable
systems. This generalization depends on the explicit construction of global solutions of
Dirichlet boundary value problems for the Hamilton–Jacobi (HJ) equation, and exploits
recent achievements in this field. For separable Hamiltonians, the solutions have been
found to reduce to the usual WKB solutions. In [2] the method has been applied to the well
known Henon–Heiles Hamiltonian, getting lists of energy levels and some wavefunctions.
When the comparison is possible, the energy eigenvalues obtained moderately agree with
those computed by means of different approaches.

In [2], the method’s applications were confined to the simplest cases, in which the
caustics, which envelope the families of classical trajectories, are smooth curves, without
self-intersections, and there are no internal caustics. In the present paper these more complex
cases are also investigated, and the method is applied to a different Hamiltonian, i.e. the
so-called Barbanis system.

In order to make the paper self-contained, in section 2 the method is briefly resumed;
for simplicity, the two-dimensional case is discussed, the extensions being obvious. The
results and some details about the numerical procedure are collected in section 3.
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2. WKB method for non-separable Hamiltonians

As is well known, the ordinary WKB method [3] can only be applied to one-dimensional or
separable multi-dimensional Hamiltonians. In order to extend it to a generic integrable
or near integrable non-separable system, we start as usual by searching for stationary
states’ wavefunctions of the form9(q) = exp( i

h̄
σ (q)) where the phaseσ is written as

an asymptotic series in ¯h

σ(q) = W(q) + h̄

i
σ1(q) + · · · (1)

The zero order termW is a solution of the time-independent HJ equation

1
2(∇W)2 + V = E (2)

whereV (q) is the potential andE is the particle’s total energy.
Let us consider one of the Liouville or KAM phase space tori [4] of the system: its

projection on the coordinate space is bounded by caustics, i.e. envelopes of trajectories’
families, which delimit the configuration space region allowed for these trajectories. See
for example figure 1, where one of these projections is reported, which refers to a family
of trajectories for the Barbanis Hamiltonian

H = 1
2(p2

x + p2
y) + 1

2(ωxx
2 + ωyy

2) + λx2y. (3)

The equipotential line at the same energy is also reported. The caustics touch this line in
four points, which we will call vertices. At first, let us suppose that all the caustics’ arcs are
smooth curves, without self-intersections. In each caustics’ point(xc, yc), the momentum

Figure 1. The initial parts of a trajectories’ family for the Barbanis Hamiltonian (3), with the
energyE = 9.211. The equipotential line is also reported.
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p is uniquely defined, apart from the sign being that of the trajectory through the point.
Starting from a vertexi (i = 1 . . . 4), it is therefore possible to compute the function

wi(xc, yc) =
∫ xc,yc

i

p dq (4)

where the integration is done along the caustics’ arcs, coming out the vertexi. The function
wi(xc, yc) is then used as boundary data of a Dirichlet problem for the HJ equation (2), in
which a solutionWi(q) inside the region bounded by the caustics is searched, knowing its
values on the boundary. This solution, i.e. the Hamilton characteristic function or (reduced)
action, is obtained in two steps: first, according to the characteristic curves’ method, for
each internal pointq the following quantities are (in principle) computed [4, 5]

Wi(q) = wi(xc, yc) +
∫ q

xc,yc

p dq (5)

where the integrations are done along all the family’s trajectories connectingq to some
caustics’ points(xc, yc). As well known, configuration space trajectories in general intersect,
so that equation (5) provides a multivalued solution of the given boundary value problem.
However, as shown by Benton [6], it is possible to extract from (5) a global one-valued
solution, by taking into account, for each pointq, only the trajectory which gives the
minimum value ofWi(q) with respect to the other trajectories meeting there; the elimination
of the superfluous trajectories is the second step of our procedure. When the caustics are
smooth, theWi(q) so generated are continuous, while they have lines of discontinuity if the
caustics present self-intersections. The Benton’s method gives a criterion to cover all the
classical region with non-intersecting trajectories, i.e. by means of vector fieldspi = ∇Wi .
This criterion is not unique, and in the presence of internal caustics which are generated
by foldings of the original phase space torus, it has to be relaxed, in order to obtain all the
fundamental branches of the action through equation (5) (see below).

The solutions can be continued outside the classical region, by integration in equation (5)
along the imaginary trajectories which correspond to complex-values solutions of the
Hamilton equations [7]; since at the first order in the expansion (1),Wi(q) is the phase
of the semiclassical wavefunction, the oscillating or exponential or oscillating–exponential
behaviour of the wavefunctions is in this way recovered.

The Benton’s approach, based on the classical trajectories, in the framework of the
semiclassical mechanics is preferable to the other recently discovered method to generate
global solutions of Cauchy or boundary problems for the HJ equation, i.e. the (vanishing)
viscosity method [8].

By changing the vertexi in the previous construction, one obtains the four branches
Wi(q) of a multivalued actionW(q); each pairWi , Wi+2, where i = 1, 2, obtained by
starting the construction from a vertex and its opposite, uses the same trajectories, run in
both ways, and the two actions are simply related each other. Instead, each pair (W1(q),
W4(q)) or (W2(q), W3(q)), represents a pair of independent global solutions of the HJ
equation in the same region of the configuration space. Incidentally, their knowledge,
assumed by De Leon and Heller [9], allows us to introduce the nodal coordinates discussed
there. For our purposes, theWi(q) permits us to generate the semiclassical wavefunction
which, at the first order of the expansion (1) can be written as∑

j

Aj (q) exp

(
i

h̄
Wj (q)

)
(6)

where the coefficientsAj near the vertices, can be determined as in [10], by matching the
semiclassical solutions with the solutions of the Schroedinger equation, which are there the
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product of two Airy functions.
As shown by Keller [11], these semiclassical wavefunctions can be quantized, by

imposing the usual EBK conditions to the two irreducible loops of the originary phase space
torus; otherwise, by projecting down from the phase space, as shown in [10], the quantization
conditions can be equivalently written in the configuration space, as for instance,∫ 2

1
p1 dq = h̄π [n + 1

2] (7)∫ 4

1
p1 dq = h̄π [m + 1

2] (8)

wherep1 = ∇W1, m andn are integers, and the line integrals are done on any arc connecting
the contiguous vertices(1, 2), and(1, 4).

A more complex case occurs when the caustics have self-intersections, so that part of
them are internal, as in figure 1. This is due to folds of the original phase space manifold.
In this case, the boundary datawi(xc, yc) are constructed as before, on the external caustics,
but at the discontinuity points, where the momentump suddenly changes its direction, also
the boundary valueswi(xc, yc) have a jump1wi ; this can be seen by considering the results
of integrating the formp dq along the originary phase space curve which projects on that
caustic’s arc.

Moreover, as seen from the figure, in this case, each pointq inside the internal caustics
is crossed not by two, but by four trajectories, belonging to four families, which are equal in
pairs in the two-sheeted region, and differ in the four-sheeted region. A possible choice for
them is reported in the figures 2(a)–(d). Each trajectory starts from the external caustics and
ends on it or on a side of the internal caustics, and each family covers the classical region
without intersection. Other choices are possible, by combining the trajectories differently
in the four-sheeted regions, but this would not change the wavefunctions. In this case the
Benton’s criterion would generate only the strictly minimal branch of the action and has to
be relaxed: in order to construct, through equation (5), all the fundamental branches of the
multivalued Hamilton’s characteristic function, each of these trajectories’ families has to be
used. It is clear that by means of equation (5), all the other branches of the action can be
generated, but their values in each pointq will differ from the fundamental ones only by
the addition of multiple integers of the action variablesI. Each trajectories’ family can be
run in both ways, and, therefore, generates two actionsWi,j (q), Wi+2,j (q) wherei = 1, 2,
j = 1 . . . 4, the first index labelling the vertex, and the second the chosen trajectories
family. The various actionsWi,j (q) so generated are discontinuous along different sides of
the internal caustics. In order to obtain a semiclassical wavefunction, the two actions
corresponding to a given family have to be combined as in (6) with the two actions
corresponding to another family, different from the first in the two-sheeted regions. In
this case therefore, four semiclassical wavefunctions, corresponding to the same degenerate
energy level, can be generated: they coincide in the two-sheeted part of the classical region,
and differ in the four-sheeted ones; moreover, they are discontinuous along two or three
sides of the internal caustics. This degeneration is purely semiclassical and it is absent
when one considers the quantum wavefunction. Indeed, in order to restore a one-to-one
correspondance between the semiclassical approximation and the quantum wavefunction,
the average of the four WKB functions can be taken, but its introduction tends to mask
the connection between the quantum state, in the limit ¯h → 0, and the underlying classical
trajectories.

When the amplitudesAi(q) are computed by numerically integrating the continuity
equation for the probability flux, it is found that all these WKB wavefunctions diverge on
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Figure 2. (a)–(d) The four families of trajectories, extracted from those in figure 1, employed
to generate the global solutions for the HJ equation.

the external caustics, and on their respective discontinuity lines belonging to the internal
caustics, which signals the local failure of the semiclassical approximation.

Finally, let us observe that the covering procedure described above could also be
followed in the previously discussed case of smooth caustics, but in this case it would
generate the same results as the Benton’s criterion. This latter is instead unavoidable when
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Figure 2. (Continued)

one tries, by means of equation (5), to construct global solutions of Cauchy or Dirichlet
problems for the HJ equation in the general situations, when there are no phase space tori.
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Figure 3. A system of Hamiltonian wavefronts, i.e. the contour lines of the Hamilton
characteristic function. The fronts have values betweenW = 0 andW = 50, with increments
1W = 1. The energy isE = 5.185.

3. Numerical results

The method described in the previous section has been applied to the construction of some
semiclassical wavefunctions for the Barbanis Hamiltonian (3), three of which are presented
in this paper. For the same system, semiclassical wavefunctions have been generated by
Davis and Heller [12] by a different method. The same parameters’ values as in [12] were
used, i.e.ωx = 1.1, ωy = 1.0, λ = −0.11, andh̄ = 1.

The procedure starts by choosing an energy valueE. Then a trajectory at that energy
is numerically followed in order to generate the caustics, which are obtained by recording
the zeroes of the Jacobi equation for the given trajectory [13]. In each caustics’ point
the momentump is also recorded; then the procedures exposed in the previous section is
applied, by choosing a vertexi and constructing the boundary datawi(xc, yc) by means
of equation (4). If the quantization conditions (7) and (8) are satisfied, equation (5) is
used, by numerically following a number (some hundreds) of trajectories starting from the
caustics, and integrating along them the formp dq. In order to facilitate the elimination
of the superfluous trajectories, and to represent the solutions, it is convenient to construct
Hamiltonian wavefronts, which are the contours of Hamilton’s characteristic functionW .
The wavefronts are orthogonal to the trajectories and their properties and construction are
exposed in [14]. Their convenience lies in that a single wavefront shows the behaviour of
a whole family of trajectories. Moreover, each intersection of two wavefronts corresponds
to two trajectories meeting in the same point with different values of the actionW , which
makes the elimination of the superfluous trajectories easier. In figure 3, for instance, a
system of wavefronts is reported, which refer to a trajectories’ family of energyE = 5.185.
The wavefronts in the figure have action values betweenW = 1 and W = 50, with
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Figure 4. (a), (b) Wavefronts for two independent solutionsWi , obtained by means of the
procedure described in the text. The fronts in figure 4(a) refer to the solution generated
starting from the lower-left vertex, which therefore hasW = 0, while the opposite vertex
hasW = 15.737. In figure 4(b) the fronts are generated starting from the lower-right vertex.

increments1W = 1.0. However, figures 4(a) and (b) report the wavefronts corresponding
to the pair of independent solutionsW1(q) andW4(q), obtained in the same case by means
of the Benton’s elimination procedure. The fronts are smooth curves, which ‘start’ from
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Figure 5. Contour lines for the wavefunction(2, 2), with the energyE = 5.185, for the Barbanis
Hamiltonian (3). The nodal lines go from a caustic’s arc to the opposite one.

the lower-left vertex (figure 4(a)) and from the lower-right vertex (figure 4(b)), which have
Wi = 0, and ‘end’ in the opposite vertex, spanning the whole classically allowed region; the
figures clearly show that theWi are continuous and one-value in each point. In figure 5 the
contours of the corresponding wavefunction, which, according to equations (7) and (8), has
the quantum numbers(2, 2). The nodal lines, which go from a caustic’s arc to the opposite
one, are clearly seen, together with the alternating system of maxima and minima.

When the energy increases, internal caustics appear, as seen in figure 1; in this case,
as discussed in the previous section, it is necessary to relax the Benton’s criterion, and
the procedure starts by choosing the non-intersecting trajectories’ families, covering all
the classical region. As seen in the previous section, to the trajectories in figure 1 four
semiclassical wavefunctions correspond. In figures 6(a) and (b) the contour lines of two
of them are reported; to make the comparison easier, in figure 6(b) the internal caustics
are also drawn. The quantum numbers are(4, 4), and the energyE = 9.211 compares
well with the valueE = 9.215 ascribed to this state in [12]. As clearly shown by the
figures, the wavefunctions differ in the regions bounded by the internal caustics: this is
also true for the other two wavefunctions, not reported here. These WKB wavefunctions
agree with that generated for the same state by Davis and Heller, as reported in figure 2
of their paper, only in the two-sheeted region of the configuration space; instead, near and
inside the internal caustics they correspond to quite different distributions of the probability
density. Due to the method used, in which the semiclassical wavefunction is approximated
as a linear superposition of Gaussian wavepackets, centred on equally time-spaced positions
along the classical trajectory, the wavefunctions obtained in this and similar cases by Davis
and Heller can be considered as an average of the various degenerate WKB wavefunctions.

In summary, the results presented in this paper and in the previous one [2] show that the
extended WKB method allows the tori quantization of non-separable Hamiltonians, giving
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Figure 6. (a), (b) Contour lines for two degenerate semiclassical wavefunctions, with the
quantum numbers(4, 4) and energyE = 9.211, for the Barbanis system (3). In figure 6(b) the
internal caustics, which bound the region where the wavefunctions differ, are also reported.

the energy levels and wavefunctions. The energy levels so computed, fairly agree with
those computed by means of other semiclassical approaches [2]. As for the wavefunctions,
the method is able to reveal the fine structure and the presence of energy degenerations,
which are not seen by means of other approaches.
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In conclusion, let us note that a possible future application of the extended WKB method
is the investigation of multi-dimensional semiclassical tunnelling, when the integrable but
non-separable potentials present multiple wells: the extended EBK quantization rules, which
give the energy levels in these cases, have been found by Creagh [15] by means of analytic
continuation of Lagrangian manifolds, and by Meyer [16], with an approach based on the
use of complex trajectories; the method here presented may be useful to construct the
corresponding wavefunctions. Work in this direction is in progress.
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